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Abstract— We present a channel predictor based
on a basis function approach formulation of a Kalman
filter channel estimator. The estimator models chan-
nel variations via truncated discrete cosine transform
(DCT), which is robust to the shape of the channel
Doppler spectrum. We show that the DCT can be ap-
proximated by a set of linear narrow passband filters
that can be formulated as Kalman filters that track
a set of decoupled parameters. Because the variation
of these parameters is much slower than the channel
fading, and the modeling accuracy provided by the fil-
ter bank is much better than with traditional models,
good prediction performance is achieved by extrapo-
lation in time. Because Doppler frequencies of interest
are much lower than the signal bandwidth, a broader
prediction horizon is obtained by decimating the es-
timated channel samples and scaling up in frequency
the filter bank accordingly. The derived predictor at-
tains less than 10% power prediction error with a pre-
diction horizon of 1 Doppler wavelength (more than
one data frame for typical prediction horizons in cel-
lular systems).
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I INTRODUCTION

The growing interest on mobile wireless communication

systems has opened many interesting research topics on

efficient sharing of channel resources between multiple

users. Considering time-selective channels, prediction of

the mobile radio channel is of particular interest for link

adaptation in multiple access systems. For example, in

long-term evolution (LTE) [3GPP (2006)] of WCDMA

downlink, physical layer scheduler allocates channel re-

sources between users in 2 ms resolution. The resource

allocation is based on SNR values reported by the users

through a feedback channel. The feedback channel is

subject to latency and therefore efficient link adaptation

requires prediction of received SNR around 2 ms ahead.

This paper presents a novel solution for channel estima-

tion and power prediction for this kind of scenario.

It is known [Rappaport (1996)] that the maximum vari-

ation of the wireless channel is upper bounded by the

maximum normalized one-sided Doppler bandwidth

νDmax =
vmaxfC

c0
TS = BDTS (1)

where fC is the carrier frequency, vmax is the maximum

velocity of a user or scatterers, BD is (unnormalized)

Doppler bandwidth, TS is the symbol duration, and c0 is

the speed of light. In cellular systems, νDmax is a small

fraction of the signal bandwidth.

Under the assumption of flat fading, the time evolution

of the channel is fully described by a sequence of com-

plex scalars at the symbol rate RS = 1/TS , which is ban-

dlimited to νDmax. One typical example of this scenario

is OFDM, where a frequency selective channel is trans-

formed into a set of frequency flat subchannels that are

easier to estimate and equalize separately than the overall

multipath channel.

Channel predictors have been developed exploiting the

fact that the signal bandwidth is much larger that the

maximum Doppler shift [T. Ekman and Ahlen (2002);

M. Sternad and Ahlen (2001); Sternad and Aronsson

(2003)]. These approaches are based on FIR predictors

and Kalman filter predictors with ARMA models, which

approximate Jakes Doppler spectrum model of the time

variation of the channel coefficients. The resulting pre-

diction horizons are limited to a fraction of a Doppler

wavelength due to mismatch between Jakes Doppler

model and practical channel Doppler shapes [X. Zhao

and Vainikainen (2003)]. Our approach for channel mod-

eling is based on a deterministic model of the channel

variation as in [J. Schmidt and Gregorio (2007); Tsatsa-

nis and Giannakis (1996); Niedzwiecki and Kaczmarek

(2005); Zemen and Mecklenbrauker (2005)] which is ro-

bust to the shape of Doppler spectrum.

We describe the channel time evolution using a partic-

ular orthogonal basis, the discrete time cosine transform

(DCT), which can be formulated in terms of a set of nar-

row passband linear filters. These narrowband filters can

be further expressed as Kalman filters that track the coef-

ficients of the basis expansion [J. Schmidt and Gregorio

(2007)]. With this Kalman filter formulation, prediction

via extrapolation in time is possible. In addition, since

the estimator is robust to the shape of Doppler spectrum,

highly accurate channel estimates are available facilitat-

ing a significantly larger prediction horizon.
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The outline of the paper is as follows. In Section II we

define the signal model used in the study. In Section III

the modeling for the Doppler spectrum is explained, and

a low complexity Kalman filter channel estimator is intro-

duced. Section IV describes the derivation of the power

predictor and achievable prediction horizons exploiting

highly oversampled channel estimates. The extension of

the estimator and predictor to frequency selective chan-

nels is outlined in Section V. Simulation results are pre-

sented in Section VI. Finally, Section VII provides our

conclusions.

II SIGNAL MODEL

In this section, we describe the basic signal model for the

system under consideration. QPSK symbols are grouped

in blocks of length N , where N is the number of sub-

carriers of an OFDM system. The resulting blocks are

processed by an IFFT and preceded by a cyclic prefix

to make the convolution of the OFDM symbol with the

channel cyclic. The transmission is frame based, where a

data frame consists of M − J data symbols and J train-

ing symbols placed at the beginning of the frame. Figure

1 depicts the transmitter schematically.

Figure 1: Model for the OFDM transmitter

We focus our analysis on the transmission of a symbol

sequence d[m] with symbol rate RS over a time-variant

flat-fading channel. The received sequence in the discrete

time model is compactly described as the linear system

y[m] = h[m]d[m] + z[m], (2)

where discrete time is denoted by m, h[m] Δ= h(mTS , 0),
d[m] is the transmitted symbol sequence, and z[m] is

additive circularly symmetric complex white Gaussian

noise with zero mean and variance σ2
z . It is assumed that

the channel varies significantly over the duration of a data

frame.

III DOPPLER MODELING AND ESTIMATOR
DESIGN

For time-varying characterization of the channel, we use

a deterministic approach [Zemen and Mecklenbrauker

(2005); Niedzwiecki (2000)] which is known to pro-

vide better modeling accuracy than the traditional Jakes

Doppler model [J. Schmidt and Gregorio (2007)].

If the channel trajectory can be considered to be given

by the superposition of R multipath components, each

with its particular attenuation and frequency [Tsatsanis

and Giannakis (1996)], the time variations of the channel

can be modeled by

h[m] =
R∑

r=1

θre
jαrm, (3)

where αr = 2πfcλr and θr refers to the frequency and

the attenuation of multipath component r, respectively.

For characterizing the channel h[m] with a basis ex-

pansion we need an efficient representation over the du-

ration of a data frame, that is, for m ∈ {1, . . . , M}. The

channel trajectory can be written by means of the inverse

DCT (IDCT) (see [Oppenheim and Shafer (1990)]) as:

h[m] =

√
2
M

ku

M∑
u=1

p[u] cos
(

(2m + 1)(u − 1)π
2M

)

(4)

where p[u] are the DCT coefficients. Since DCT is a lin-

ear transform, Eq. 4 allows a representation of the chan-

nel without knowing the frequencies nor the attenuations

of the multipath components that would require the use

of high order statistics [Tsatsanis and Giannakis (1996)].

Theoretical [Jakes (1974); Rappaport (1996)] and ex-

perimental results [X. Zhao and Vainikainen (2003)]

show that Doppler power spectrum of mobile radio chan-

nels is approximately bandlimited to νDmax. The energy

compaction property of DCT [Oppenheim and Shafer

(1990); J. Lee and Chung (1999)] makes it suitable for

representing the channel with a small error and a small

number of coefficients. Specifically, the Landau-Pollak

theorem states that the minimum necessary dimension for

the basis expansion is [Lee and Messerschmitt (1994)]:

D = [2νDmaxM ] + 1 (5)

in which, for the Doppler spectrum of interest (Doppler

bandwidth much smaller than the signal bandwidth), we

have D � M .

We can then approximate the channel temporal evolu-

tion, for h̃[m], as a linear combination of the cosine basis

h[m] ≈ h̃[m] =
D∑

i=1

fi[m]γi = fT (m)Γ (6)

where f(m) = [f1(m), . . . , fD(m)]T ∈ RD×1 is a vec-

tor of the basis functions at time instant m, and Γ =
[γ1, . . . , γD]T ∈ CD×1 is a vector containing the co-

efficients of the basis expansion for the actual data frame.

Rewriting Eq. 6, we can express h̃[m] more conve-

niently as

h̃[m] = h̃1[m] + h̃2[m] + . . . + h̃D[m] (7)

where we now have

h̃1[m] = f1[m]γ1

...

h̃D[m] = fD[m]γD (8)

which, since the basis functions are orthogonal, repre-

sents a set of decoupled equations to solve for the com-

ponents of Γ. The spectrum of each of these compo-

nents can be approximated by a narrow passband filter
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[J. Schmidt and Gregorio (2007)] in a lattice-form real-

ization [Regalia (1991)] as

Vi(z) =
1
2
(1 − Ui(z)) (9)

where

Ui(z) =
z−2 + sin θ1i(1 + sin θ2)z−1 + sin θ2

1 + sin θ1i(1 + sin θ2)z−1 + sin θ2z−2
(10)

for |θ1i| < π/2, sin θ1i = cos(ω0/i) and sin θ2 =
1−tan(B/2)
1+tan(B/2) , where sin θ2 is a design parameter and B

refers to the -3dB bandwidth of the narrowband filter.

With this formulation, each h̃i[m] of Eq. 8 can be gen-

erated by feeding white complex Gaussian noise ei to

each of the passband filters of Eq. 9. These filters can

be expressed in state space form as

xi[m + 1] = Fixi[m] +Giei[m]
h̃i[m] = Hixi[m] + Biei[m] (11)

for i = 1, . . . , D. Since the basis functions are symmet-

ric, these matrices are all real valued.

Using Eq. 7 and Eq. 11 the received signal defined in

Eq. 2 can be written as

y[m] = d[m]
D∑

i=1

h̃i[m] + z[m] (12)

The optimum adaptive algorithm for estimating h̃[m]
for white Gaussian noise is a bank of D decoupled

Kalman filters [Haykin (1996)]. If we further assume

that the transmitted sequence d[m] has constant modu-

lus and is white (QPSK), each Kalman filter admits a

steady state solution for the Kalman gain Ki[m] (for

i = 1, . . . , D) [Lindbom (1993); R. Bosisio and Spag-

nolini (2005)]

limt→∞Ki[m] = K (13)

Considering this, low complexity Kalman filters can be

derived for estimating the channel [J. Schmidt and Gre-

gorio (2007)]

ε[m] = y[m] − d̂[m]ĥ[m]

x̂i[m + 1] = Fix̂i[m] +Kid̂
∗[m]ε[m]

ĥ[m] =
D∑

i=1

Hix̂i[m] + Biε[m] (14)

The computational complexity of these filters is com-

parable to that of an LMS algorithm [R. Bosisio and

Spagnolini (2005); Lindbom (1993)], while having the

tracking performance of a Kalman filter.

IV DERIVATION OF POWER PREDICTOR

Efficient link adaptation requires knowledge of received

SNRs in the transmitter. In frequency division duplex

(FDD) systems SNR values must be communicated to the
transmitter via a feedback channel. Even time-division

duplex (TDD) systems require SNR feedback, because

transmitter cannot know the level of the interference in

the receiver. Realistic feedback channels are subject to

feedback latency and therefore channel prediction in the

receiver is required, the longer the prediction horizon the

better.

One alternative for deriving a channel predictor is to

use L-step prediction to extrapolate the estimated com-

plex channel coefficient from Eq. 14 into the future

ĥ[m+L |m ] =
D∑

i=1

HiFL
i x̂i[m |m ] +Biε[m |m ] (15)

The square of the predicted complex channel tap would

then constitute a prediction of the channel power p̂[m +
L |m ] [T. Ekman and Ahlen (2002)]

p̂[m + L |m ] =
∣∣∣ĥ[m + L |m ]

∣∣∣2 (16)

An appropriate measure for evaluating power predic-

tion algorithms is the normalized mean square power es-

timation error (NMSE) [Sternad and Aronsson (2003)]

defined by

NMSE =
E

∣∣∣|h[m]|2 − p̂[m |m − L ]
∣∣∣2

E |h[m]|4 (17)

As verified experimentally, the achievable prediction

horizon with this extrapolation technique is only of 10

to 20 samples with an accurate Doppler modeling as the

one presented in Section III, when the power prediction

error is below 10%. Compared to one period of maxi-

mum Doppler variation (one Doppler wavelength λ), this

prediction horizon is generally well below the range re-

quired for link adaptation in typical cellular systems. One

alternative to broaden the prediction horizon, without in-

creasing the power prediction error, is to use decimated

channel samples [T. Ekman and Ahlen (2002)].

In wireless communication systems where channel

power prediction is required, the signal bandwidth is usu-

ally many times larger than the maximum Doppler fre-

quency component. This characteristic of the time vari-

ation of the channel allows to decimate the channel esti-

mates by a factor T without losing information on chan-

nel variations. The predictor can then be constructed by

scaling up the frequencies of the passband filter bank by

the same factor and feeding this new scaled filter bank

with the decimated channel estimates [T. Ekman and

Ahlen (2002)]. This way, the new prediction horizon is

extended to L′ = L × T , while keeping the same pre-

diction error, as defined in Eq. 17. Figure 2 shows the

estimator/predictor structure schematically.

For the decimation operation on the filter estimates to

be feasible, an antialiasing filter must be applied before

downsampling. A low complexity solution is to average

the channel estimate at the present time instant with pre-

vious samples up to 1-5% of the maximum Doppler shift

period, where the channel can be considered to remain

almost constant.
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Figure 2: Estimator/Predictor block diagram

V EXTENSION TO FREQUENCY-SELECTIVE
CHANNELS

For processing at the receiver side, we assume the time-

varying channel to remain constant during one OFDM

symbol. Therefore, the impulse response of the channel

at each time instant m is defined by

h[m] = [h[m, 1], h[m, 2], . . . , h[m, P ]]T ∈ CP×1 (18)

where P is the number of taps of the impulse response.

The frequency response at time m, g[m] ∈ CN×1

with elements g[m, k] for k ∈ 1, . . . , N is defined as

the DFT of the impulse response [Zemen and Mecklen-

brauker (2005)]. The receiver removes the cyclic pre-

fix and performs a DFT. The received signal vector af-

ter these two operations for each sample time and each

subcarrier is given by

y[m, k] = g[m, k]d[m, k] + z[m, k] (19)

where z[m, k] is complex additive, circularly symmetric

white Gaussian noise with zero mean and variance σ2
z and

d[m, k] is the transmitted symbol at time m on subcarrier

k.

According to Theorem 1 of [Negi and Cioffi (1998)],

the MMSE estimate of h[m] can be obtained by using P
pilot subcarriers that are equispaced within the OFDM

symbol. It is also known [Rappaport (1996)] that the

maximum variation of the frequency response across sub-

carriers, at time instant m, is upper bounded by the co-

herence bandwidth, which is inversely proportional to the

root mean square delay spread of the channel.

Using the results from [Negi and Cioffi (1998)], and

Eq. 6 (in frequency domain), a basis set of dimension P
can be used to approximate the frequency response of the

channel for every instant m where training data is sent.

In this way the training overhead can be further reduced

from N to only P pilot subcarriers. Figure 3 shows the

resulting pilot pattern.
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Figure 3: Pilot structure in OFDM

VI PERFORMANCE EVALUATION

In this section we evaluate the performance of the pro-

posed predictor. We present simulation results that

demonstrate the estimation accuracy obtained by the es-

timator presented in Section III, from which our power

predictor is derived.

We compare our estimator with the estimators de-

rived in [Lindbom (1993)] and [Zemen and Mecklen-

brauker (2005)] which we call ARMA2 and DPSS, re-

spectively. These estimators have computational com-

plexity comparable to ours. We evaluate the performance

of the three estimators in terms of the MSE for different

Doppler models, channel conditions, and training ratios.

Two Doppler models are used, one is the classical Jakes

Doppler Spectrum [Jakes (1974)] which is widely used

in the literature, and the other is a narrow passband spec-

trum as described in [X. Zhao and Vainikainen (2003)].

Fast fading channels were generated by low-pass filtering

complex additive white Gaussian noise to assure that the

fading model is realistic.

We consider for simulation the system parameters of

[Zemen and Mecklenbrauker (2005)]. The system oper-

ates at a carrier frequency fC = 2 GHz with a symbol

rate of RS = 48.6×103 Hz. We consider a Doppler band-

width of BD = 160 Hz which gives νDmax = 0.0033,

and a maximum Doppler wavelength λ corresponding to

6.23 ms equivalent to 303 symbols. The frame length is

set to N = 256 symbols. A single subcarrier channel is

used for better evaluation of the tracking and prediction

capabilities. The dimension of the basis expansion is set

to D = 5 and the amount of training is set to 1 and 2%

(3 and 5 pilots per frame respectively). In all cases we

assume the maximum Doppler shift νDmax to be known.

The only free parameters of our design are: the coeffi-

cient sin θ2 defined after Eq. 10 (which was set to 0.99),

and design parameters L and T .

For the comparison of our channel estimator with

ARMA2 and DPSS we first focus on a channel with a
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Jakes Doppler spectrum. Figure 4 shows the MSE per-

formance results for this model, which demonstrate the

improved modeling accuracy of the basis functions ap-

proach compared to the ARMA modeling of Doppler

spectrum.
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SNR (dB)

M
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1000 data frames
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Passbands 2%
DPSS 2%
ARMA2 1%

Figure 4: MSE for νDmax = 0.0033 and a Jakes Doppler
spectrum
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Figure 5: MSE for νEstimator = 0.0033 and a passband
Doppler spectrum centered at νDmax = 0.0025

Figure 5 shows MSE results, this time for a channel

with a narrow-passband Doppler spectrum centered at

ν′Dmax = 0.0025 (120Hz) that is different from the de-

sign parameter νDmax = 0.0033 used in the estimators.

The results show the main advantage of our estimator

when the Doppler spectrum deviates from Jakes model.

Notice that ARMA2 estimator is designed to match Jakes

Doppler spectrum, and DPSS estimator is designed to

best approximate an ideal lowpass spectrum, so it is ex-

pected that their performance will degrade when the spec-

trum is different [X. Zhao and Vainikainen (2003)]. Two

independent receiver antennas were used to implement

spatial diversity in order to reduce the effects of deep

fades [H. Meyr and Fechtel (1998)] in the decision di-

rected mode.

Next we focus on the performance of the predictor in

terms of prediction horizon. We first evaluate the power

prediction error as a function of the extrapolation factor
L with the predictor operating at the symbol rate as in Eq.

15. This allows us to determine the maximum achievable

prediction range of our model for the Doppler spectrum.

Figure 6 depicts this performance curve together with the

channel estimator power error (no Prediction) and the av-

erage channel power used as predictor. This figure shows

that the passband filter bank attains less than 10% power

prediction error for a prediction horizon of L = 9. Once

the desired power prediction error is set, the value T will

determinate the prediction range for this prediction error.
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100
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Predictor power error at symbol rate

No Prediction
Predicted
Average Power as Predictor

Figure 6: NMSE for symbol rate prediction and Jakes Doppler
spectrum

Once we know the prediction capability of our estima-

tor, we are able to analyze the choice of the extrapola-

tion factor to be used for extending the prediction range.

The maximum allowable decimation factor T to obtain a

Nyquist frequency of 2BD is T = 152. However, this

value of T will require a large order antialias filter for

noise reduction. Setting T = 32 we obtain 1 Doppler

wavelength prediction range for L = 9 and a prediction

error below 10%. The performance of the predictor for

these choices of L and T is shown in Fig. 7 as a function

of the signal to noise ratio.

0 5 10 15 20 25 30
10−2

10−1

100

101

SNR

N
M

SE

Predictor error for fixed range

Sample Prediction L=9
Decimation Factor T=34
Prediction Horizon 1λ

Figure 7: NMSE vs SNR for 1 Doppler wavelengh prediction
range (1λ=303 samples=1.18 frames)

VII CONCLUSIONS

We developed a channel power predictor based on a low

complexity channel estimator for flat fading channels that
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can be extended to OFDM systems. We showed that a set

of narrow passband filters is suitable for the tracking of

a fast fading channel if filters’ central frequencies are ap-

propriately chosen to approximate an orthonormal basis

set. We have included these filters into the formulation of

a low complexity Kalman estimator.

The estimator proposed in this work is well suited for

channel prediction as it is robust to model changes. Fur-

thermore, the filter structure can be periodically adjusted

to match a varying maximum Doppler shift because it is

based on very simple basis functions. This results in a

channel prediction that attains very little error for predic-

tion horizons as large as one Doppler bandwidth.

The proposed predictor outperforms similar predic-

tor schemes as those reported in [T. Ekman and Ahlen

(2002); M. Sternad and Ahlen (2001); Sternad and Aron-

sson (2003)], mostly due to the better modeling approach

for the Doppler spectrum.
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